

The Managed Mentoring Program on getting started in beekeeping.

Managed Mentoring

Managed Mentoring

Varroa Mites and Beekeeping

Lesson | Varroa Mites

What is Covered in this Module

Introductio	to Varroa Mites	
Mite Popul	tion Dynamic	
Mite Popul	tion Impacts	
Supreme C	lonies	
The Perfec	Storm	

Impact to the Population

□ Wounds and Viruses to Adults and Developing Bees

- Adult Bees Mite injuring developing bees
 - The nurse or drone bee host is wounded from the physical bite of the mite
 - In the process they can be inflicted with viruses through the wound site
 - Mites will often be found on adult drone bees,
 - □ They will switch to workers in abundance when drones are no longer produced.
- Larva
 - Mites also enter cells with developing bees
 - They prefer developing drones, but will also enter and injure developing workers

Managing Varroa – Mite Dynamics

□ Varroa Mites are always there

- They feed off the fat body and hemolymph (blood fluid)
 - Researchers indicate that the mites are converting the egg yolk pre-cursor to make their egg – they do not produce this and it is necessary for reproduction

□ 5th Stage of Development

• Varroa mite generally enter the cell and hide in the brood food during the 5th stage of larval development (just before capping)

5

Larval Choice

6

Varroa Mites Prefer Drones

- Varroa mites will favor development in developing drone larva
 - Biologically they are attracted to developing drones
 - This is bad for us as drones have a longer gestation period and therefore varroa mites have more time to generate additional offspring
 - It is not out of the realm of possibility that they can enter developing queen cells also
- You can often see varroa in capped drone larva
 - Peel back the capping and if a colony is infested, you will see varroa

.

You will not see this.

It is atypical for mites to be visible on the bees

Mite Development

□ Females Mites Generate Offspring

- Female mites will lay eggs, and mate, with the eggs during the bee's larval development
 - Given drones take longer to gestate, the mites can make more offspring because the developing mite have more time to grow to a viable adult
- The ratio of mites to bee larva is in favor of the mites
 - Stated another way, because mites create multiple mites in contrast to the honeybees, their population will over a period overwhelm the colony

Mite Population Dynamics

- The Varroa reproduction rate for mites in the cell is a ratio of 1.3 to 2.6 females per every bee that emerges. In time, this population dynamic will build enough
 - mites to out pace the population.

Especially as the bees slow down when the nectar flow declines.

Representative Example

Zac Lamas Data

- Researcher Zac Lamas is at the forefront of this research
- His work is showing that early in the season the varroa mites are often on the drones (male bees)

Percent mites detected per host

Age (days old)

When Drones Disappear

Early Season Mite Samples are misleading

- When mites are with drones, it is not going to show up in sampling
 - When you sample for varroa mites, traditionally you sample for varroa mites using worker brood frames for sampling
 - Since the mites are in developing drone brood, and on drones, mite sampling is masking the true mite population in the hive
- When the season changes, and drones are no longer there...
 - You will see a spike in varroa mites in the sampling because they are now with the workers

For the Long Run

Colonies that are infested will implode

• If mites, not found through typical sampling, jump to workers when drones taper off, the impact to the hive population will be severe

□ Timing

 Cessation of Drones corresponds with the window of bees building winter bees. So Net Net – If you treat late, your hives die.

Virus Transmission

Vectored by Mites

• When the mite wounds the bees, it transmits viruses to the bees during its feeding

Virus Transmission through Contact

- Bees will remove infected developing bees.
 - Virus transmissions can be transmitted through the contact and passed on to the workers coming into contact to clean up the detected / damaged larva
 - In certain periods of need, bees will cannibalize the larva which also plays a role in transmission throughout the colony. One pathway is via worker trophallaxis.

Definition

Trophallaxis: the transfer of food or other fluids among members of a community through mouth-tomouth

A word on Viruses

□ The list is long

• Of the 18 known honeybee viruses, six are of primary concern:

Deformed Wing Virus (DWV)

 $\hfill\square$ the most frequently observed of these viruses

- Black queen cell virus (BQCV)
- Sac brood virus (SBV)
- Kashmir bee virus (KBV)
- Acute bee paralysis virus (ABPV)
- Chronic bee paralysis virus (CBPV)

¹Varroa mite Biology and Feeding Damage Virginia Tech Department of Entomology

Without Mite Management

Healthy colonies implode

- When the ratio goes out of balance, the colony cannot cope.
 - Colonies that are thriving often hit the wall in early summer if they are carrying a mite load.
 - More than anything, these colonies especially need to be monitored
- When monitoring indicates colonies must be treated early to prevent an overwhelming impact from Varroa Mites
 - This is the most important dynamic to understand today if you want any chance of succeeding as a beekeeper in these times

Supreme Colonies

□ Large Colonies are Mite Factories

- They have all the right elements
 - Large colonies produce more brood and given the ratio, more mites
 - Large colonies have an abundance of drones
 - Large colonies bring in abundant resources; With abundant resources colonies can produce brood longer
 - $\hfill\square$ The queen will keep working as long as indicators can sustain colony growth
- Philosophically, we do not advocate for massive colonies
 - At a later stage in the lessons, we will explore this dynamic and have recommendations

Mite Populations

Mite populations correlate with the bee population

□ 4 seasonal phases

- Dormant
- Population Increase
- Population Peak
- Population Decrease
 - Return to Dormant

Principle – Start Low

□ Starting with a low mite threshold

- Colonies that begin a season with a low mite threshold, can sustain health longer into the season
 - Incidentally, packages and Nucs fit this category (if sourced properly) and therefore mites have not been a concern up until this point
- Starting with a low threshold allows you to keep mites at bay
 - One key principle is start low and keep the mites from overwhelming the colony at any point.
 - Healthier, well provisioned colonies are a path to overwintering

Treat in the Right Time Frame

□ Treat when Drones are tapering off

- You need to get the timing right
 - It is imperative to monitor and treat **early** to prevent impact
 - When drone production ramps down, you will see mite percentages in samples go up.
 - □ Some seasons do not have high mite populations no rhyme or reason to this
 - Sometimes you sample (instructions provided in the next lesson) and percentages are low
 - $\hfill\square$ Other times, you see the spike and you treat to get the mite population numbers down

Bee Population Dynamic (Refresh Cycle)

During Population Growth, Bees are Refreshed

- The lifespan of a worker is in high rotation when the colony is at peak production
 - Old bees are replaced at a fast rate and the replenishment of new healthy bees keeps thing chugging right along. It somewhat negates the impact of the mites
- When the nectar flow slows down, the queen stops laying
 - Population of workers created tapers off and the bees in the hive are present for longer periods
 - Bees in play for longer periods have more susceptibility to varroa impacts.

Thwart the Perfect Storm

Late Spring, Early Summer

• The drones taper off, mites are at an all time high, and the queen is not refreshing the working population with as much fervor as earlier

□ Change the balance

- The longer this dynamic is allowed to persist, the more foothold the mites have in taking the upper hand
- Monitor and treat early; June/ early July is customary If you wait until Aug/Sept to treat.... The fight is all but over.

Closing Comments

Customary Close

- Where we stand, where we are going...
 - This module sets the stage for knowing how varroa mites impact a colony
 - Our next lessons review
 - How to monitor (sample) for varroa mites
 - Treatment Options and Methods for Varroa
 - And a primer on Small Hive Beetles

Q&A

What Questions did we not anticipate?

- If you have feedback, you can leave a constructive comment; but be nice.
- You could also send an email to <u>comments@managedmentoring.com</u>
 - Please refer to this video in the subject so we know what the reference is.

